eQTL identification and mapping in the population isolate of Norfolk Island

Miles Benton
Genomics Research Centre, Griffith Health Institute
Genemappers
Port Douglas, Australia

26-29th August 2012
Outline

1. Background
2. eQTL Mapping
3. Other Findings
4. Acknowledgements
Rationale

- eQTL’s and eQTL mapping
 - Why are we doing this study?
 - Use the unique genetic isolate of Norfolk Island to hone in on functionally relevant loci
 - using gene expression and SNP association
Rationale

- eQTL’s and eQTL mapping
- Why are we doing this study?
 - Use the unique genetic isolate of Norfolk Island to hone in on functionally relevant loci
 - using gene expression and SNP association
Rationale

- eQTL’s and eQTL mapping
- Why are we doing this study?
- Use the unique genetic isolate of Norfolk Island to hone in on functionally relevant loci
 - using gene expression and SNP association
Rationale

- eQTL’s and eQTL mapping

- Why are we doing this study?

- Use the unique genetic isolate of Norfolk Island to hone in on functionally relevant loci

- using gene expression and SNP association
A brief history lesson...
The Reconstructed N1 Core Pedigree...
Study Design

- Participants - 330 NIHS individuals
 - Samples - Blood (circulating lymphocytes)
 - mRNA extracted > cDNA > expression analysis

- Platforms:
 - Expression: Illumina HT-12 beadarray
 - SNPs: Illumina 610quad

~ 48000 mRNA probes & ~ 590000 SNPs for 330 participants

M Benton
Study Design

- Participants - 330 NIHS individuals
 - Samples - Blood (circulating lymphocytes)
 - mRNA extracted > cDNA > expression analysis

- Platforms:
 - Expression: Illumina HT-12 beadarray
 - SNPs: Illumina 610quad

\(\sim 48000\) mRNA probes & \(\sim 590000\) SNPs for 330 participants
Participants - 330 NIHS individuals

1. Samples - Blood (circulating lymphocytes)
2. mRNA extracted > cDNA > expression analysis

Platforms:
1. Expression: Illumina HT-12 beadarray
2. SNPs: Illumina 610quad

\(\sim 48000 \) mRNA probes & \(\sim 590000 \) SNPs for 330 participants
Normalised gene expression data (23000 transcripts)1

Heritability analysis (batched using GenABEL/R: Polygenic Model)

Heritable transcripts GWAS using SNP set

1. mmscore function - pedigree structure analysis
2. study-wide significance for NI pop = 1.84x10-7
3. suggestive significance threshold = 1.0x10-5

A series of filters were designed to identify cis/trans eQTL’s

1. SNP/CHR location, Chromosome quadrants
2. Graphical Filter - Modified Manhattan Plots with kern smoothing to facilitate peak identification (David Eccles)

1Göring et al., (2007) \textit{Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes.} Nature Genetics
Computational Genomics

- Normalised gene expression data (23000 transcripts)\(^1\)

- Heritability analysis (batched using GenABEL/R: Polygenic Model)

 - Heritable transcripts GWAS using SNP set
 - mmscore function - pedigree structure analysis
 - study-wide significance for NI pop = 1.84\(\times\)10\(^{-7}\)
 - suggestive significance threshold = 1.0\(\times\)10\(^{-5}\)

- A series of filters were designed to identify cis/trans eQTL’s
 - SNP/CHR location, Chromosome quadrants
 - Graphical Filter - Modified Manhattan Plots with kern smoothing to facilitate peak identification (David Eccles)

\(^1\)Göring et al., (2007) *Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nature Genetics*
Computational Genomics

- Normalised gene expression data (23000 transcripts)

- Heritability analysis (batched using GenABEL/R: Polygenic Model)

- Heritable transcripts GWAS using SNP set
 - mmscore function - pedigree structure analysis
 - study-wide significance for NI pop = 1.84x10^{-7}
 - suggestive significance threshold = 1.0x10^{-5}

- A series of filters were designed to identify cis/trans eQTL’s
 - SNP/CHR location, Chromosome quadrants
 - Graphical Filter - Modified Manhattan Plots with kern smoothing to facilitate peak identification (David Eccles)

¹Göring et al., (2007) *Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes*. Nature Genetics
Normalised gene expression data (23000 transcripts)1

Heritability analysis (batched using GenABEL/R: Polygenic Model)

Heritable transcripts GWAS using SNP set

- mmscore function - pedigree structure analysis
- study-wide significance for NI pop = 1.84x10$^{-7}$
- suggestive significance threshold = 1.0x10$^{-5}$

A series of filters were designed to identify cis/trans eQTL’s

- SNP/CHR location, Chromosome quadrants
- Graphical Filter - Modified Manhattan Plots with kern smoothing to facilitate peak identification (David Eccles)

1Göring et al., (2007) *Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes*. Nature Genetics
Estimation of power to detect significantly heritable transcripts in Norfolk Island pedigree was run in SOLAR

80% power to detect heritable transcripts above $H^2 = 0.3$
Heritable eQTL's

- H^2 analysis of $n=23000$ transcripts2

Distribution of significantly heritable transcripts
(age & sex adjusted, $n=1712$)

2Max sig. $H^2 = 0.84$ Min sig. $H^2 = 0.15$
Abstract

The title of the document is "Heritable eQTL’s" and it appears to be discussing eQTL mapping. The slide contains a Manhattan plot, which is a type of plot used in genome-wide association studies to identify genetic markers associated with a trait. The plot displays the -log10(p-value) on the y-axis and chromosome number on the x-axis, with points indicating the location of significant associations.

The slide also includes a section titled "Overview of eQTL Manhattan Plots," which likely provides context or interpretation of the Manhattan plot.

Acknowledgements

The document includes a section for acknowledgments, although the specific content is not visible in the image provided.
Heritable eQTL’s

Overview of eQTL Manhattan Plots

\[p = 1.74 \times 10^{-18} \]
Heritable eQTL’s

Overview of eQTL Manhattan Plots
Overview of eQTL Manhattan Plots
Heritable eQTL’s

Overview of eQTL Manhattan Plots
Overview of eQTL Manhattan Plots

\[p = 1.74 \times 10^{-27} \]
The NI eQTL map

Linear NI eQTL map

- Chr12
 - eQTL type: cis, trans

- Chr6

Position
0.0e+00 5.0e+07 1.0e+08 1.5e+08

M Benton

eQTL mapping in NI isolate

28/08/12
The NI eQTL map

NI eQTL map

eQTL type
●
cis
trans

chr1 chr2 chr3 chr4 chr5 chr6 chr7 chr8 chr9 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr20 chr21 chr22

eQTL mapping in NI isolate

M Benton
The NI eQTL map

M Benton

eQTL mapping in NI isolate

28/08/12
200 cis & 70 trans eQTL’s identified at study wide sig.

<table>
<thead>
<tr>
<th></th>
<th>n</th>
<th>cis</th>
<th>trans</th>
<th>significance threshold</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIHS</td>
<td>330</td>
<td>200</td>
<td>70</td>
<td>1.84E-007</td>
</tr>
<tr>
<td>BSGS</td>
<td>852</td>
<td>1529</td>
<td>256</td>
<td>5.25E-012</td>
</tr>
<tr>
<td>San Antonio</td>
<td>1240</td>
<td>750</td>
<td>1072</td>
<td>LOD score >3</td>
</tr>
</tbody>
</table>
Heritable eQTL’s: Comparison

- Overlap of several top hits with other studies:

1. BSGS\(^3\): overlap 7 of their top 12 cis-eQTL results
 (genes: HLA-DRB1, HLA-DQB1, ERAP2, RPS26, CLEC12A, TUBB2A, PAM)

2. Some overlap with San Antonio Family Heart Study\(^4\)
 An overlap of 7 of the top 20 cis-eQTL results:
 (genes: UTS2, RPS26, TIMM10, LGALS2, RPL14, HLA-DRB3, HLA-DRB5)

\(^4\) Göring et al., (2007) *Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes*. Nature Genetics
Another interesting finding... a group of trans eQTL that were originally filtered out appear to form a genome-wide 'signature' associated with 9 separate transcripts:
Another interesting finding... a group of trans eQTL that were originally filtered out appear to form a genome-wide 'signature' associated with 9 separate transcripts:
Another interesting finding... a group of trans eQTL that were originally filtered out appear to form a genome-wide 'signature' associated with 9 separate transcripts:
Another interesting finding... a group of trans eQTL that were originally filtered out appear to form a genome-wide 'signature' associated with 9 separate transcripts:
eQTL with Genomewide SNP signature?

- No SNP peaks, but potential genomewide SNP signature:
 1. 3 locus SNP signature
 2. 9 transcripts, 9 genes from 6 different chromosomes

<table>
<thead>
<tr>
<th>Probe_ID</th>
<th>Gene</th>
<th>Chromosome</th>
<th>Top SNP p-value</th>
<th>eQTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILMN_1719256</td>
<td>CKS1B</td>
<td>1</td>
<td>1.65e-10</td>
<td>trans</td>
</tr>
<tr>
<td>ILMN_1675797</td>
<td>EPDR1</td>
<td>7</td>
<td>2.05e-09</td>
<td>trans</td>
</tr>
<tr>
<td>ILMN_1726720</td>
<td>NUSAP1</td>
<td>15</td>
<td>8.81e-11</td>
<td>trans</td>
</tr>
<tr>
<td>ILMN_1709634</td>
<td>CMBL</td>
<td>5</td>
<td>7.74e-09</td>
<td>trans</td>
</tr>
<tr>
<td>ILMN_1741133</td>
<td>NME1</td>
<td>17</td>
<td>1.28e-09</td>
<td>trans</td>
</tr>
<tr>
<td>ILMN_1786125</td>
<td>CCNA2</td>
<td>4</td>
<td>3.54e-06</td>
<td>trans</td>
</tr>
<tr>
<td>ILMN_1800197</td>
<td>MRPL36</td>
<td>5</td>
<td>3.64e-07</td>
<td>trans</td>
</tr>
<tr>
<td>ILMN_1728934</td>
<td>PRC1</td>
<td>15</td>
<td>2.39e-11</td>
<td>trans</td>
</tr>
<tr>
<td>ILMN_1663390</td>
<td>CDC20</td>
<td>1</td>
<td>4.34e-12</td>
<td>trans</td>
</tr>
</tbody>
</table>

- GATHER analysis suggests all 9 genes involved in possible cell division/mitosis pathway...
In conclusion...

- Identified a genomewide eQTL map in NI.
- 1712 expression transcripts were found to be significantly H^2
- GWAS identified 200 cis & 70 trans eQTL (study wide threshold).
- Potentially novel SNP/eQTL signatures have been identified.

Future Directions...

- More comprehensive meta-analysis of current eQTL maps/databases should facilitate the detection of novel (NI/population specific?) eQTL’s.
- Linkage analysis with SOLAR (STR & SNP??) for comparison.
- More comprehensive analysis of trans-acting eQTL’s.

We’ve identified a trans-eQTL mapping to a gene which associates with an obesity related phenotype (COMP3) with associated kidney dysfunction.
In conclusion...

- Identified a genomewide eQTL map in NI.
- 1712 expression transcripts were found to be significantly H^2
- GWAS identified 200 cis & 70 trans eQTL (study wide threshold).
- potentially novel SNP/eQTL signatures have been identified.

Future Directions...

- More comprehensive meta-analysis of current eQTL maps/databases
- **should facilitate the detection of novel (NI/population specific?) eQTL’s**
- linkage analysis with SOLAR (STR & SNP??) for comparison
- more comprehensive analysis of trans-acting eQTL’s

We’ve identified a trans-eQTL mapping to a gene which associates with an obesity related phenotype (COMP3) with associated kidney dysfunction.
In conclusion...
- Identified a genomewide eQTL map in NI.
- 1712 expression transcripts were found to be significantly H^2.
- GWAS identified 200 cis & 70 trans eQTL (study wide threshold).
- Potentially novel SNP/eQTL signatures have been identified.

Future Directions...
- More comprehensive meta-analysis of current eQTL maps/databases should facilitate the detection of novel (NI/population specific?) eQTL’s.
- Linkage analysis with SOLAR (STR & SNP??) for comparison.
- More comprehensive analysis of trans-acting eQTL’s.

We’ve identified a trans-eQTL mapping to a gene which associates with an obesity related phenotype (COMP3) with associated kidney dysfunction.
Project Leaders: Prof Lyn Griffiths, Dr Rod Lea

Co Supervisors: Dr Donia Macartney-Coxson, Dr Geoff Chambers

Texas Biomedical Research Institute: Melanie Carless, Claire Bellis, Matt Johnson, Harald Göring, Thomas Dyer, Jo Curran, John Blangero

Genomics Research Centre: Michelle Hanna, Dr Bridget Maher, Dr David Eccles

Funding: NHMRC, John Corbett (Scholarship)

Ethics: Griffith University Ethics Committee