Epigenetics—where the environment meets the genetics of disease: Interpreting high-throughput DNA Methylation data

Miles Benton
Institute of Environmental Science and Research, Wellington, New Zealand.
Genomics Research Centre, Griffith Health Institute, Griffith University, Australia.

QUT SBB symposium
Queensland University of Technology, Brisbane

25-26th November 2013
Epigenetics: An Overview

- **Epi-(GREEK:over,above) genetics**
 - heritable changes in gene expression/phenotype
 - functionally relevant changes, doesn’t modify underlying genomic sequence

- Several mechanisms:
 1. Histone modifications (Acetylation and Methylation)
 2. DNA Methylation
A brief overview of DNA Methylation

- 5’methylation of cytosine
- typically at CpG dinucleotide

Result is a reduction of gene expression (though there are exceptions)

- Methylation is heritable - imprinting
- **BUT** is also dynamic: response to environment
The Illumina 450K Human Methylation Chip

- **Illumina 450K Human Methylation Chip**
 - Genome Wide: has >450,000 probes (individual CpG sites)
 - only recently publications starting to emerge
 - analysis needs to catch up

- DNA is Bisulfite converted, fragmented and hybridised.
- Difference in intensity between meth/unmeth probes gives Beta.

Beta Values

\[\beta = \frac{\text{meth}}{\text{meth} + \text{unmeth} + 100} \]

Values range between 0-1
- think of as percent methylation
Study Design is Crucial

Need to really think about study design:

- Same old story: Quality in equals Quality out
 - good bioinformatics will never make up for poor lab technique and/or poor study design

- Gender - sex specific methylation patterns

- Origin of sample (i.e. blood, tissue)
 - mixed cell populations

- Case/Control? Paired-samples? Numbers?
Example: Gender and Tissue specific markers

cg10422744
NI_blood
Esr_ab
Esr_om
gender

cg03278611
gender

cg20256263
tissue

cg21983484
gender

cg06946770
tissue

cg13408286
tissue

cg25012947
gender

cg14083015
tissue

cg16379462
tissue

cg11962640
tissue

cg20485084
tissue

cg08059778
gender

M Benton
DNA Methylation
25/11/13
6 / 9
Investigating Methylation Profiles in Blood Cells

Publicly available data set (6 'healthy' males) - cell sorted

- cg01477015 : CD19 () CHR: 16 (28948319)
- cg01758575 : CD19 () CHR: 16 (28943288)
- cg03660502 : CD19 () CHR: 16 (28948092)
- cg05433111 : CD19 () CHR: 16 (28943232)
- cg05981394 : CD19 () CHR: 16 (28942152)
- cg06323049 : CD19 () CHR: 16 (28943094)
- cg07322144 : CD19 () CHR: 16 (28948179)
- cg07597976 : CD19 () CHR: 16 (28943019)
- cg09989938 : CD19 () CHR: 16 (28944403)
- cg14102807 : CD19 () CHR: 16 (28943677)
- cg2490063 : CD19 () CHR: 16 (28948266)
- cg27565966 : CD19 () CHR: 16 (28943198)
'Global' Methylation Profiles (MARMAL-AID)

- TSS1500
- TSS200
- 5'UTR
- 1stExon
- Body
- 3'UTR
- Intergenic

average beta

cell/tissue types
- Prostate
- Breast
- Tongue
- Eye
- Heart
- Stomach
- Bone
- Liver
- Kidney
- Bladder
- Lung
- Blood
- Skin
- Brain
- Adipose
- Ab_pre
- Ab_post
- Om_pre
- Om_post

M Benton
DNA Methylation

25/11/13
Acknowledgements

ESR/Wakefield Obesity Project: Dr Donia Macartney-Coxson, Prof Richard Stubbs, Angela Jones, Daniel Kay

Norfolk Island Health Study: Prof Lyn Griffiths

PHD Supervisors: Dr Rod Lea, Prof Lyn Griffiths

Co Supervisors: Dr Donia Macartney-Coxson, Dr Geoff Chambers

Obesity Project Sample Running: George Washington University, Washington DC

Genomics Research Centre: Dr Heidi Sutherland, Michelle Hanna, Dr Bridget Maher, Dr David Eccles

Institutes: Institute of Environmental and Scientific Research, Wakefield Hospital, Griffith University, Victoria University of Wellington

All the patients for their consent to being part of the respective studies